The ability to identify nutrient-rich food and avoid toxic substances is essential for an animal’s survival. Although olfaction and vision contribute to food detection, the gustatory system acts as a final checkpoint for food acceptance or rejection. The fruit fly Drosophila melanogaster tastes many of the same stimuli as mammals and provides an excellent model system for comparative studies of taste detection. We have utilized a combination of molecular, behavioral, and calcium imaging studies to determine the taste ligands of different gustatory neurons and understand how taste information is processed in the higher brain. More recently, we have begun to examine how hunger, satiety and learning influence activity in taste circuits and regulate feeding decisions. These studies provide insight into how taste compounds are detected and processed by the brain.