We consider certain size-conditioned critical Bienaymé trees, in which each vertex is endowed with a spatial location that is a random displacement away from their parent’s location. By construction, the positions along each vertex’s lineage form a random walk. It is convenient to encode the genealogy and spatial locations using a path-valued process called the discrete snake. We prove that under a global finite variance and a tail behaviour assumption on the displacements, any globally centered discrete snake on a Bienaymé tree whose offspring distribution is critical and admits a finite third moment has the Brownian snake driven by a normalised Brownian excursion as its scaling limit. Our proof relies on two perspectives of Bienaymé trees. To prove convergence of finite dimensional distributions we rely on a line-breaking construction from a recent paper of Addario-Berry, Blanc-Renaudie, Donderwinkel, Maazoun and Martin. To prove tightness, we adapt a method used by Haas and Miermont in the context of height functions of Markov branching trees.
This is based on joint work in progress with Louigi Addario-Berry, Serte Donderwinkel, and Christina Goldschmidt.