Dissecting the Circuits and Algorithms That Process Visual Motion
Peripheral visual circuits perform paradigmatic computations such as motion processing. However, our understanding of the necessary and sufficient roles of individual cell types, their interactions, and the molecules that underpin their specific activity patterns remains limited. Our work combines genetic manipulations of both neural activity and molecular function with in vivo imaging of calcium and voltage signals to unravel circuit mechanisms using the Drosophila visual system as a model. Our results reveal that the algorithms used to detect visual motion in flies and humans are fundamentally similar.
Date:
21 March 2017, 12:00 (Tuesday, 10th week, Hilary 2017)
Venue:
Oxford Martin School, 34 Broad Street
Speaker:
Thomas R. Clandinin (Stanford University )
Organising department:
Department of Physiology, Anatomy and Genetics (DPAG)
Organiser:
Fiona Woods (University of Oxford, Department of Physiology Anatomy and Genetics, Centre for Neural Circuits and Behaviour)
Organiser contact email address:
fiona.woods@cncb.ox.ac.uk
Part of:
CNCB Seminar Series
Booking required?:
Not required
Audience:
Members of the University only
Editor:
Fiona Woods