Human life expectancy has been increasing steadily over the last century but this has resulted in an increasing incidence of age-related chronic diseases. Over 60% of people over the age of 65 will suffer from more than one disease at the same time (multimorbidity) and 25-50% of those over 80 years old develop frailty, defined as an accumulation of deficits and loss of reserve. Multimorbidity and frailty have complex medical needs and are strongly associated with disability and hospitalization. However, current treatments are suboptimal with problems of polypharmacy due to the fact that each disease is treated individually. Geroprotectors target fundamental mechanisms of ageing common to multiple age-related diseases and shows promise in delaying the onset of multimorbidity and frailty in animal models. However, their clinical testing in patients has been challenging due to the high level of complexity in the mode of action of geroprotectors and in the way multimorbidity and frailty develop.
The talk will give an overview of these problems and make the case for the use of AI approaches to solve some of those complex issues with a view of designing appropriate clinical trials with geroprotectors to prevent age-related multimorbidity and frailty and extend healthspan.