Explainable Artificial Intelligence for Biology and Health
Explainable Artificial Intelligence for Biology and Health
Modern machine learning (ML) models can accurately predict patient progress, an individual’s phenotype, or molecular events such as transcription factor binding. However, they do not explain why selected features make sense or why a particular prediction was made. For example, a model may predict that a patient will get chronic kidney disease, which can lead to kidney failure. The lack of explanations about which features drove the prediction – e.g., high systolic blood pressure, high BMI, or others – hinders medical professionals in making diagnoses and decisions on appropriate clinical actions. I will talk about my group’s efforts to develop explainable AI techniques for varied biological and medical applications, including treating cancer based on a patient’s own molecular profile, identifying therapeutic targets for Alzheimer’s, predicting kidney diseases, preventing complications during surgery, enabling pre-hospital diagnoses for trauma patients, and improving our understanding of pan-cancer biology and genome biology.
Date:
25 January 2022, 15:00 (Tuesday, 2nd week, Hilary 2022)
Venue:
Venue to be announced
Speaker:
Professor Su-In Lee (University of Washington)
Organising department:
Department of Psychiatry
Organiser:
Dr Andrey Kormilitzin (University of Oxford)
Organiser contact email address:
andrey.kormilitzin@psych.ox.ac.uk
Host:
Dr Andrey Kormilitzin (University of Oxford)
Part of:
Artificial Intelligence for Mental Health Seminar Series
Booking required?:
Not required
Booking email:
andrey.kormilitzin@psych.ox.ac.uk
Audience:
Public
Editor:
Andrey Kormilitzin