A multiscale perspective of cortical computational dynamics
What does a quantitative theory of cortex entail? What are the computational principles that underlie cortical dynamics? Despite the fast pace of discoveries and progress in disparate domains of neuroscience, the lack of unifying principles and fundamental theories of the cortex is vividly apparent. The key shortcoming is that the inherent nature of the brain as a complex adaptive system and multiscale aspects of information processing in neuronal networks are mostly ignored or sacrificed to fit the reductionist approach. To develop a theory of cortical computation, one must address collective information processing and understand ensemble pattern formation at multiple scales. In search of a global theory of cortex, I explored several aspects of neuro-signals at multiple scales and conditions. These included the variability of oscillatory patterns, oscillatory entrainment of ensemble spiking, wave propagation, ensemble excitation/ inhibition balance, and the emergence of network disorder (seizure).
The insights gleaned from these collective computational dynamics provide the foundation for a multiscale cortical quantitative theory of cortex that will guide us in the design of the next generation of neuro-inspired computational algorithms and biomedical devices.
Date:
19 March 2019, 13:30 (Tuesday, 10th week, Hilary 2019)
Venue:
Le Gros Clark Building, off South Parks Road OX1 3QX
Venue Details:
Lecture Theatre
Speaker:
Dr Nima Dehghani (MIT)
Organisers:
Dr Friedemann Zenke (University of Oxford),
Dr Tim P Vogels (University of Oxford)
Host:
Dr Tim P Vogels (University of Oxford)
Part of:
Oxford Neurotheory Forum
Booking required?:
Not required
Audience:
Members of the University only
Editor:
Friedemann Zenke