In just a short period of time CRISPR-Cas9 technology has revolutionized the field of genome editing, and taken the scientific community by storm. Already our understanding of how best to apply this technology has advanced significantly and almost every week new publications appear showcasing its application in basic and translational research.
While CRISPR-Cas9 is applicable across many different cell types, we have found it particularly suited for genome editing in near-haploid human cell lines. This has allowed us to establish a robust pipeline for the inactivation of non-essential genes at unprecedented scale and efficiency.
We have now knocked out over 1500 human genes and have generated a resource that is, to the best of our knowledge, the largest collection of human knockout cell lines available, covering comprehensive subsets of genes clustered by biological pathway (e.g. the autophagy pathway, the JAK/STAT pathway) or by phylogenetic relationship (e.g. kinases, bromodomain-containing proteins).
In this talk we will discuss how, through more than 1500 genome editing experiments, we have started to unravel some of the general principles governing the use of CRISPR-Cas9 in mammalian cells. For example, we have analyzed the impact of variation in the guide RNA sequence on Cas9 cleavage efficiency and characterized the mutational signature arising from CRISPR-Cas9 cleavage.
We will also highlight (with examples) how these learnings are now being applied to introduce other genomic modifications in a high throughput manner, including chromosomal deletions, translocations, point mutations and endogenous gene tags.