Mathematical models of childhood diseases are often fitted using deterministic methods under the assumption of homogeneous contact rates within populations. Such models can provide good agreement with data in the absence of significant changes in population demography or transmission, such as in the case of pre-vaccine era measles. However, accurate modeling and forecasting after the start of mass vaccination has proved more challenging. This is true even in the case of measles which has a well understood natural history and a very effective vaccine. We demonstrate how the dynamics of homogeneous and age-structured models can be similar in the absence of vaccination, but diverge after vaccine roll-out. We also present some fundamental differences in deterministic and stochastic methods to fit models to data, and propose techniques to fit long term time series with imperfect covariate information. The methods we develop can be applied to many types of complex systems beyond those in disease ecology.