Machine Learning in Python with scikit-learn
In this tutorial, we will complete a small end-to-end Machine Learning project using scikit-learn (scikit-learn.org), comprehensive, but simple and one of the most useful Machine Learning libraries for Python.
On a small dataset we will go through the typical pipeline of a real Machine Learning project: start with statistical summaries and visualization of the data, build multiple different machine learning models, use cross-validation to estimate their accuracies, select the best algorithm, make and evaluate the predictions on a validation set.
At the end of the session, we might have a look at the other useful functions integrated into scikit-learn.

The following tools will be used in this code clinic:
Python3 – www.python.org
Python SciPy libraries: – scipy – numpy – matplotlib – pandas – sklearn (shorten from scikit-learn)

You should stick to your favourite Python IDE; I will be working in Spyder – www.spyder-ide.org, which I highly recommend as IDE for R-users, who starts with Python and moves from R-Studio.
Date: 19 May 2020, 11:00
Venue: Venue to be announced
Speakers: Speaker to be announced
Organising department: Big Data Institute (NDPH)
Organiser: Sarah Laseke (Big Data Institute)
Organiser contact email address: sarah.laseke@ndph.ox.ac.uk
Booking required?: Required
Booking url: https://oxford.onlinesurveys.ac.uk/python-code-clinic-19-may
Booking email: sarah.laseke@ndph.ox.ac.uk
Audience: Members of the University only
Editor: Sarah Laseke