Single-Cell Transcriptomics Reveals that Glial Cells Integrate Homeostatic and Circadian Processes To Drive Sleep-Wake Cycles
The sleep-wake cycle is determined by circadian and sleep homeostatic processes. However, the molecular impact of these processes and their interaction in different brain cell populations remains unknown. To fill this gap, we profiled the single-cell transcriptome of adult Drosophila brains across the sleep-wake cycle and four circadian times. We show cell type-specific transcriptomic changes, with glia displaying the largest variation. Glia are also among the few cell types whose gene expression correlates with both sleep homeostat and circadian clock. The sleep-wake cycle and sleep drive level affect expression of clock gene regulators in glia, while diminishing the circadian clock specifically in glia impairs homeostatic sleep rebound after sleep deprivation. These findings offer a comprehensive view of the effects of sleep homeostatic and circadian processes on distinct cell types in an entire animal brain and reveal glia as an interaction site of these two processes to determine sleep-wake dynamics.
Date: 18 May 2023, 12:00 (Thursday, 4th week, Trinity 2023)
Venue: Sherrington Library, off Parks Road OX1 3PT
Venue Details: Sherrington Building
Speaker: Sha Liu (Center for Brain and Disease Research VIB-KU Leuven, Belgium)
Organising department: Department of Physiology, Anatomy and Genetics (DPAG)
Organiser: Fiona Woods (University of Oxford, Department of Physiology Anatomy and Genetics, Centre for Neural Circuits and Behaviour)
Organiser contact email address: fiona.woods@cncb.ox.ac.uk
Part of: CNCB Seminar Series
Booking required?: Not required
Audience: Members of the University only
Editor: Fiona Woods