Mathematical flexibility is increasingly recognized as an important construct of interest for both researchers and practitioners in mathematics education. Flexibility can be characterized as a learner’s willingness to change strategies based on the particular problem-solving conditions or goals. In this talk, I first provide an introduction to flexibility. I then explore different ways that flexibility has been assessed, highlighting successes and challenges in the various forms of assessment. I then present recent empirical research results on flexibility, and I conclude by suggesting some promising areas for future research on flexibility.
This seminar is in-person only.