With the emergence of evidence-based treatments for treatment-resistant depression, strategies to identify individuals at greater risk for treatment resistance early in the course of illness could have clinical utility. We sought to develop and validate a model to predict treatment resistance in major depressive disorder using coded clinical data from the electronic health record. We identified individuals from a large health system with a diagnosis of major depressive disorder receiving an index antidepressant prescription, and used a tree-based machine learning classifier to build a risk stratification model to identify those likely to experience treatment resistance. The resulting model was validated in a second health system.
Electronic health records facilitated stratification of risk for treatment-resistant depression and demonstrated generalizability to a second health system. Efforts to improve upon such models using additional measures, and to understand their performance in real-world clinical settings, are warranted.